The reaction of Fe(NO3)3⋅9 H2O with KOH under hydroflux conditions at about 200 °C produces red crystals of K2−xFe4O7−x(OH)x in a quantitative yield. In the crystal structure, edge‐sharing [FeO6] octahedra form ∞2[ Fe2O6] honeycomb nets. Pillars consisting of pairs of vertex‐sharing [FeO4] tetrahedra link the honeycomb layers and form columnar halls in which the potassium ions are located. The trigonal (P 3‾ 1m) and the hexagonal (P63/mcm) polytypes of K2−xFe4O7−x(OH)x show oriented intergrowth. The sub‐stoichiometric potassium content (x≈0.3) is compensated by hydroxide ions. K2−xFe4O7−x(OH)x is an antiferromagnet above 2 K and its magnetic structure was determined by neutron powder diffraction. Under ambient conditions, K2−xFe4O7−x(OH)x hydrolyzes and K2CO3 ⋅ H2O forms gradually on the surface of the K2−xFe4O7−x(OH)x crystals. Upon annealing at air at about 500 °C, the potassium atoms in the columnar halls start to order into a superstructure. The thermal decomposition of K2−xFe4O7−x(OH)x proceeds via a topotactic transformation into K1+x′Fe11O17, adopting the rhombohedral β’’ or the hexagonal β‐aluminate‐type structure, before γ‐Fe2O3 is formed above 950 °C, which then converts into thermodynamically stable α‐Fe2O3.
Read full abstract