Scatterometers are highlighted in polar applications, such as sea ice extent retrieval. There are currently three types of spaceborne scatterometer in operation, among which the rotating pencil beam scatterometer and the rotating fan beam scatterometer have similar rotating observation geometry, but different beam sampling. However, it is difficult to objectively evaluate the performance of the two rotating beam scatterometers using the obtained data. This is because there are significant differences in their system parameters, which in turn affects the objectivity of the evaluation. Considering the high flexibility of the rotating fan beam scatterometer, this study proposes a dual-mode sea ice extent retrieval method for the rotating fan beam scatterometer. The dual modes refer to the rotating fan beam mode (or full incidence mode) and the equivalent rotating pencil beam mode (or single incidence mode). The two modes share the same system and spatiotemporal synchronous backscatter measurements provide the possibility of objectively comparing the rotating pencil beam and rotating fan beam scatterometers. The comparison, validation, and evaluation of the dual-mode sea ice extent of China France Oceanography Satellite Scatterometer (CSCAT) were performed. The results indicate that the sea ice extent retrieval of the equivalent rotating pencil beam mode of the rotating fan beam scatterometer is realizable, and compared to the existing rotating pencil beam scatterometers (such as the OceanSat Scatterometer on ScatSat-1, OSCAT, on ScatSat-1, and the Hai Yang 2B Scatterometer, HSCAT-B), the derived sea ice extent is closer to that of Advanced Microwave Scanning Radiometer 2 (AMSR2). For the two modes of CSCAT, when compared to AMSR2, the sea ice extent of the CSCAT full incidence mode has smaller values of root mean squared error (RMSE), error-of-ice (EI), and ice edge location distance (LD) than those of the CSCAT single incidence mode. These suggest that the rotating fan beam scatterometer shows better observation abilities for sea ice extent than the rotating pencil beam scatterometers.
Read full abstract