The Laptev Shelf is the area where the Gakkel Ridge, an active oceanic spreading axis, approaches a continental edge, causing a specific structural style dominated by extensive rift structures. From the latest Cretaceous to the Pliocene, extension exerted on the Laptev Shelf created there several deep subsided rifts and high-standing basement blocks. To understand syn-rift basin geometries and sediment supply relationships across the Laptev Shelf, accurate extension estimates are essential. Therefore, we used 2-D gravity modeling and 3-D gravity inversion to constrain the amount of crustal stretching across the North America-Eurasia plate boundary in the Laptev Shelf. The latest Cretaceous-Cenozoic extension in that area is partitioned among two rift zones, the Laptev Rift System and the New Siberian Rift. These rifts were both overprinted on the Eurasian margin that had been stretched by 190-250 km before the Late Cretaceous. While the Laptev Rift System, connected to the Gakkel Ridge, reveals increasing extension toward the shelf edge (190-380 km), the New Siberian Rift is characterized by approximately uniform stretching along strike (110-125 km). The architecture of the Laptev Rift System shows that the finite extension of about 500 km is sufficient to entirely eliminate crystalline continental crust. In the most stretched rift segment, continental mantle is exhumed at the base of the Late Mesozoic basement. The example of the Laptev Rift System shows that extension driven by divergent plate movement is a sufficient cause to produce almost complete continental breakup without an increased heat input from the asthenospheric mantle.