This study evaluates cloud and precipitation features over the orography of southern Baffin Island in the southeast Canadian Arctic during the Storm Studies in the Arctic (STAR) field project in autumn 2007. Three case studies provide the basis for a comparative analysis of how cloud and precipitation features from upstream ocean regions are modified by the orography, in addition to the variability of these features over diverse synoptic and sea-ice conditions. Using data collected by a research aircraft with an onboard W-band Doppler radar and microphysical instrumentation, multiple factors were found to play roles in enhancing and/or reducing cloud and precipitation over the orography of the region. Gravity waves, terrain shape, atmospheric stability, and atmosphere–ocean exchanges were all associated with precipitation enhancement. In addition, several factors that reduce precipitation were identified, including sublimation, high sea-ice extent, and low-level blocking in the upstream environment. Accretion and aggregation were identified as important particle growth mechanisms over the orography. By increasing particle density and/or mass, the probability of ice particles precipitating to the surface increased. These results indicate that the complexity of these critical features over terrain in high-latitude regions poses considerable challenges for modelling.
Read full abstract