AbstractThe present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (fci ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple of fci. The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left‐hand (LH), and higher frequency harmonics are associated with the right‐hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi‐perpendicular directions to the ambient magnetic field. The results of linear theory and Particle‐In‐Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars.
Read full abstract