Avalanche susceptibility assessment is a core aspect of regional avalanche early warning and risk analysis and is of great significance for disaster prevention and mitigation on proposed highways. Using sky–ground integration investigation, 83 avalanche points within the G219 Wen Quan to Horgos transportation corridor were identified, and the avalanche hazard susceptibility of the transportation corridor was partitioned using the certainty factor (CF) model and the coupled coefficient of the certainty factor–Geodetector (CF-GD) model. The CF model analysis presented nine elements of natural conditions which influence avalanche development; then, by applying the Geodetector for each of the factors, a weighting coefficient was given depending on its importance for avalanche occurrence. The results demonstrate the following: (1) According to the receiver operating characteristic (ROC) curve used to verify the accuracy, the area under the ROC curve (AUC) value for the CF-GD coupled model is 0.889, which is better than the value of 0.836 of the CF model’s evaluation accuracy, and the coupled model improves the accuracy by about 6.34% compared with the single model, indicating that the coupled model is more accurate. The results provide avalanche prevention and control recommendations for the G219 Wen Quan to Horgos transportation corridor. (2) The slope orientation, slope gradient, and mean winter temperature gradient are the main factors for avalanche development in the study area. (3) The results were validated based on the AUC values. The AUCs of the CF-GD coupled model and the CF model were 0.889 and 0.836, respectively. The accuracy of the coupled model was improved by about 6.34% compared to the single model, and the coupled CF-GD model was more accurate. The results provide avalanche control recommendations for the G219 Wen Quan to Horgos transportation corridor.