Abstract
High-entropy bulk metallic glasses (HE-BMGs) with desired thermal stability often exhibit limited plasticity due to the occurrence of shear localization avalanches. The present study reports the fabrication of a novel composite TiZrHfNb0.5Cu0.5Be0.5, consisting of a high entropy crystalline phase (TiZrHfNb) and an amorphous matrix (TiZrHfCuBe). The composite exhibits a distinctive combination of strength and ductility, surpassing that of traditional BMG composites, along with a notable capacity for work-hardening. Furthermore, it demonstrates exceptional wear resistance under varying normal loads or frequencies. The deformation and wear mechanisms are attributed to the solid-solution strengthening and stress-induced β→α" martensitic transformation in the high entropy crystalline phase, as well as the deformation-induced crystallization in HE-BMG matrix. These findings would provide a new strategy for preparing advanced HE-BMGs composite with unique properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.