The objective of this study is to measuring the morphology and position of bilateral temporomandibular joints in patients with unilateral and bilateral molar scissor bite and simulating the deformation of the mandible during occlusion, in order to provide thesis for the diagnosis of temporomandibular joint disease in patients with unilateral and bilateral molar scissor bite. This study was a retrospective study. A total of 10 patients with unilateral molar scissor bite (the unilateral molar scissor bite group) and 10 patients with bilateral molar scissor bite (the bilateral molar scissor bite group) were selected as the experimental group, and 20 adult patients with classⅠ of angle classification of similar ages were selected as the control group. All patients underwent cone beam computed tomography scans, by measuring the width of the fossa, height of the fossa, articular eminence inclination, long axis of the condyle, minor axis of the condyle, horizontal angle of the condyle and the space of the temporomandibular joint, compare temporomandibular joint morphology and position. The three-dimensional finite element analysis of the mandible morphology was carried out to evaluate the force and deformation of the mandible by using software to simulate the occlusion of the patients. It was further explored the relationship between the force of the mandible morphology and the possible temporomandibular joint disorder symptoms of the patients. Intergroup comparisons for the unilateral molar scissor bite group and left sides of the other groups revealed that the superior articular space in the group with unilateral molar scissor bite was shorter than that in the control group (P<0.05); the long axis of the condyle in the unilateral and bilateral molar scissor bite group were both shorter than that of the control group (P<0.05); among which the unilateral group was larger than the bilateral group, and the minor axis of the condyle in bilateral molar scissor bite group was smaller than in the control group (P<0.05), and the unilateral and bilateral condylar groups were larger than the control group (P<0.05); and the condylar horizontal angle in the unilateral and bilateral groups were larger than that in the control group (P<0.05). The normal sides of the unilateral molar scissor bite group and right sides of the other groups had smaller superior articular space than the control group (P<0.05); and the condylar long-axis in bilateral group was smaller than the control group (P<0.05); and the normal side of the condylar short-axis unilateral group was larger than that of the bilateral condylar group. Three-dimensional finite element analysis: the condyle of patients with molar scissor bite was a concentrated area of deformation during the bite of the mandible, when the first molar occlusion of the scissors bite side was simulated, the maximum deformation was located in the condyle in the X-axis and Z-axis directions. The amount of deformation was greater than that of the scissor bite side in the X-axis direction, while in the Z-axis direction, the normal side was greater than the scissor bite side. The maximum sites of local deformation in the X-axis direction were located in anterior and posterior the transverse crest of scissor bite side, and the minimum sites of local deformation was at 1/3 of the anterior slope of the inner pole of the normal side, the maximum local deformation sites in the Z-axis direction were located in the outer pole and below the outer pole of the normal side. The X-axis deformation value was the largest in the molars occlusion on the normal side, the Y-axis deformation value was in the premolars occlusion on the normal side, and the Z-axis deformation value was the largest in the centric occlusion, the deformation value of the condyle was not most significant in molar scissor bite. Unilateral and bilateral molar scissor bite resulting in a short condyle morphology, and the bilateral group had a shorter condylar morphology than the unilateral group. The condyle of the patient with molar scissor bite is a concentrated area of poor occlusal deformation, and the largest sites of deformation are distributed near the transverse ridge of the inner and outer poles of the condyle. Different occlusion conditions have an effect on condylar deformation values, but do not indicate whether there is a clear association between them.
Read full abstract