In this paper, competing risks model is considered when causes of failure are dependent. When latent failure times are distributed by the Marshall-Olkin bivariate Kumaraswamy model, inference for the unknown model parameters is studied under a generalized progressive hybrid censoring. Maximum likelihood estimates of unknown parameters are established, and the associated existence and uniqueness are provided. The approximate confidence intervals are constructed via the observed Fisher information matrix. Moreover, Bayes estimates and the credible intervals of the unknown parameters are also presented based a flexible Gamma-Dirichlet prior, and the importance sampling method is used to compute associated estimates. Simulation study and a lifetime example are given for illustration purposes.