A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite‐based researchers, ground‐based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two‐dimensional ground‐based data and single points satellite‐based data to infer three‐dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground‐based magnetic data from an extensive, systematic network of observations, combined with ground‐based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite‐based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground‐based space physics has made a major advance during the last decade.
Read full abstract