Understanding the role of holding ejectors is essential in the broader context of environmental and sustainability research. Through rigorous analysis, optimization of ejector usage is applied to minimize resource consumption and promote cleaner, more sustainable production methods. However, the design and control strategies of the power plant, including the setpoints and tolerances of various components, can also contribute to the power plant load ratio (PPLR). This study explores the impact of PPLR in the power plant cycle on the holding ejectors performance under various condenser temperatures. For comprehensive analysis, the study employs a comprehensive framework encompassing various indicators such as condensing fluid behavior, energy consumption, exergy destruction, air suction in the condenser, and entrainment ratio. The research unveils key findings, including a notable increase in oblique shocks with rising PPLR and a quantifiable rise in the maximum liquid mass fraction in the condensed regime. Additionally, the analysis reveals numerical relationships, such as a 5 % increase in mass flow rate and a 4.9 % rise in energy consumption with a PPLR increase from 0 to +5 %. Negative impacts on performance, such as a 4.6 % reduction in air extraction flow rate from the condenser, are observed with PPLR changes from 0 to −5%.
Read full abstract