Autonomous vehicles are becoming central for the future of mobility, supported by advances in deep learning techniques. The performance of aself-driving system is highly dependent on the quality of the perception task. Developments in sensor technologies have led to an increased availability of 3D scanners such as LiDAR, allowing for a more accurate representation of the vehicle's surroundings, leading to safer systems. The rapid development and consequent rise of research studies around self-driving systems since early 2010, resulted in a tremendous increase in the number and novelty of object detection methods. After the first wave of works that essentially tried to expand known techniques from object detection in images, more recently there has been a notable development in newer and more adapted to LiDAR data works. This paper addresses the existing literature on object detection using LiDAR data within the scope of self-driving and brings a systematic way for analysing it. Unlike general object detection surveys, we will focus on point-cloud data, which presents specific challenges, notably its high-dimensional and sparse nature. This work introduces a common object detection pipeline and taxonomy to facilitate a thorough comparison between different techniques and, departing from it, this work will critically examine the representation of data (critical for complexity reduction), feature extraction and finally the object detection models. A comparison between performance results of the different models is included, alongside with some future research challenges.
Read full abstract