Visual motion in the roll plane elicits torsional optokinetic nystagmus (tOKN) with intermittent periods of illusory, contradirectional self-motion (circularvection, CV). The CV may also have a component of whole-body tilt if the axis of stimulus rotation is not aligned with the direction of gravity. We report how the characteristics of tOKN are affected by the presence of CV. Subjects had their eye movements recorded by VOG whilst viewing a full-field stimulus rotating at 30-60 degrees/s about their naso-occipital axis. They were tested in upright and supine posture and signalled the presence-absence of CV with a pushbutton. In both postures, during CV, tOKN slow-phase gain was found to be enhanced and average torsional eye position shifted in the direction opposite to stimulus rotation. When supine, slow-phase gain was greater than when upright both during the perception of object-motion and during CV. The effects may be explained in terms of a relegation of restraining vestibular input to the torsional oculomotor system during CV and illusory tilt.
Read full abstract