In nuclear fusion (ITER and the future DEMO), those components that face the plasma are exposed to high temperature and irradiation which, in the long term, modifies their thermal and mechanical properties and tritium retention. Tungsten is a candidate material and is the subject of many studies of microstructure evolution under various irradiation and temperature conditions. One milestone is the characterization of its defect properties. We here readdress the diffusion of nanocavities on broad ranges of size and temperature and compare it with dissociation, a competing process during nanocavity growth. First, at the atomic scale, we used molecular dynamics to explore the variety of elementary events involved in the nanocavity diffusion. Second, an experimental study of ion-irradiated samples, annealed at different temperatures up to 1,773 K, revealed the creation and growth of nanocavities on transmission electron microscopy images. Third, we performed multi-objective optimization of the nanocavity diffusion input of our object kinetic Monte Carlo model to reproduce the experimental results. Finally, we applied a sensitivity analysis of the main inputs of our model developed for these particular conditions—the source term which combines two cascade databases and the impurities whose interaction with the defects is characterised with a supplemented database of density functional theory calculations. Three domains of nanocavity size were observed. The first is the small vacancy clusters, for which atomistic calculations are possible and dissociation is negligible. The second is the small nanocavities, for which we provide new diffusion data and where a competition with the dissociation can take place. The third domain is the large nanocavities, for which, in any case, the dissociation prevents their existence above 1,500 K in the absence of a stabilizing interface.
Read full abstract