Alternariol (AOH) is an emerging mycotoxin produced by Alternaria strains. The acute toxicity of the mycotoxin is low; however, chronic exposure to AOH may result in the development of endocrine disruptor and/or carcinogenic effects. The toxicokinetic properties of AOH have barely been characterized. Therefore, in this study, we aimed to investigate its interactions with CYP (1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and OATP (1A2, 1B1, 1B3, and 2B1) transporters employing in vitro enzyme assays and OATP overexpressing cells, respectively. Our results demonstrated that AOH is a strong inhibitor of CYP1A2 (IC50 = 0.15 μM) and CYP2C9 (IC50 = 7.4 μM). Based on the AOH depletion assays in the presence of CYP enzymes, CYP1A2 is mainly involved, while CYP2C19 is moderately involved in the CYP-catalyzed biotransformation of the mycotoxin. AOH proved to be a strong inhibitor of each OATP transporter examined (IC50 = 1.9 to 5.4 μM). In addition, both direct and indirect assays suggest the involvement of OATP1B1 in the cellular uptake of the mycotoxin. These findings promote the deeper understanding of certain toxicokinetic interactions of AOH.