The structures of the open-chain amide carboxylic acid rac-cis-2-[(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C(15)H(19)NO(4), (I), and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C(15)H(17)NO(3), (II), chiral cis-3-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid, C(15)H(15)NO(4), (III), and rac-cis-4-(1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl)benzoic acid monohydrate, C(15)H(15)NO(4)·H(2)O, (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060 (1) Å for the amide O atom] and the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H···O hydrogen-bonding interactions [graph-set notation R(2)(2)(8)]. The cyclic imides (II)-(IV) are conformationally similar, with comparable benzene ring rotations about the imide N-C(ar) bond [dihedral angles between the benzene and isoindole rings = 51.55 (7)° in (II), 59.22 (12)° in (III) and 51.99 (14)° in (IV)]. Unlike (II), in which only weak intermolecular C-H···O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H···O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph-set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxy O-atom acceptors in a cyclic R(4)(4)(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural database for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.
Read full abstract