Abstract A comprehensive whole-rock geochemical and mineral chemistry study was carried out of granites from the Narnaul and surrounding isolated hills of North Delhi Mobile Belt, NW India to constrain their genesis, and tectonic environment. The distinctive features of granites are meta to peraluminous nature and decreasing trend of P2O5 with high SiO2 (>71%) ascribed to its metaigneous origin. In detail the chemical diversity of the studied samples is reflected by their affinity to Calc-alkaline to shoshonite series with high K2O/Na2O (mostly>1), low MgO (< 0.11%) and variation in Mg# (upto 0.5) and maficity with increasing SiO2. The positive Eu anomalies, high LILE, highly enriched LREE (La/Sm = 4.13–19.33) pattern and comparatively elevated concentrations of Cs, La, Ta, Dy, Zr, Pb and Yb suggest different episodes of magmatic differentiation. Our data indicate that melting of older subduction-related igneous rocks and the underwent fractional crystallization in hydrous conditions is the possible mechanism for the generation of I-type granites in collisional tectonic setting.
Read full abstract