Bacterial blight of pomegranate caused by Xanthomonas auxonopodis pv.punicae (Xap) threaten the existence of a group of farmers for the past few decades who rely on pomegranate cultivation for their livelihood since it will cause huge yield loss. The primary focus of this study was to conduct a thorough analysis of the characterization of this blight incitant Xap. Physiological, biochemical, and molecular characteristics of six phytopathogenic strains of Xap, designated as PBF1 (PBF: Pomegranate Blight Fruit), PBF2, PBF3, PBF4, PBF5, and PBF6, isolated from the infected fruits were examined. Bacterial colonies were featured as gram-negative, yellow-pigmented circular with a glistening appearance. An attempt to determine the best culture medium, favouring bacterial proliferation was successfully done with four distinct medium, Nutrient Glucose Agar (NGA), Nutrient sucrose Agar (NSA), Yeast Dextrose Calcium Carbonate Agar (YDCA) and Yeast Glucose Calcium Carbonate Agar (YGCA) and comparatively, significant growth was found in NGA (66.66%) followed by YDCA (33%). According to the antibiotic susceptibility results, both ampicillin and streptomycin were determined as potentially effective drugs in preventing the proliferation of Xap (P 0.05). The reactive oxygen species-mediated plant immune response during host-pathogen interaction was confirmed by accessing the presence of H2O2 accumulation in infected leaves via 3,3 - diaminobenzidine (DAB) -staining technique. Bacterial isolates from this study were confirmed by two universal constitutive genes such as gyrB and 16S rRNA. From the BLAST analysis, the isolates were identified as Xap with base pair lengths of 1408bp, 1180bp, and 1159bp, which correspond to PBF1, PBF2, and PBF3, respectively. A neighbor-joining phylogenetic tree study explaining a strong phylogenetic relationship between the query sequence and closely related bacterial species.