Acute hepatopancreatic necrosis disease, caused by Vibrio parahaemolyticus strains carrying the pirA and pirB toxin genes (VpAHPND), has been causing great economic losses in Asia and America in the shrimp farming industry. Numerous strains are resistant to antibiotics. However, supplementation with probiotic antagonists has become a more desirable treatment alternative. Fourteen strains of microorganisms were assessed for their potential to inhibit VpAHPND in vitro activity. The bacteria with the highest activity were challenged with VpAHPND-infected Pacific white shrimp Litopenaeus vannamei. Furthermore, the genomic characteristics of probiotic bacteria were explored by whole-genome sequencing. We identified the Sonora strain as Bacillus pumilus, which possesses positive proteolytic and cellulolytic activities that may improve shrimp nutrient uptake and digestion. Challenge trials showed a low cumulative mortality (11.1%). B. pumilus Son has a genome of 3,512,470 bp and 3734 coding sequences contained in 327 subsystems. Some of these genes are related to the biosynthesis of antimicrobial peptides (surfactins, fengycin, schizokinen, bacilibactin, and bacilysin), nitrogen and phosphorus metabolism, and stress response. Our in vitro and in vivo findings suggest that B. pumilus Sonora has potential as a functional probiotic.