Aim: To assess the Bioremediation efficiency of Bacillus amyloliquefaciens and Pseudomonas aeruginosa strain CL 9 with nutrient amendment using bio-stimulating agents such as Fish waste and Goat manure on crude oil polluted soils in Rivers State, Nigeria.
 Study Design: The study employs experimental design, statistical analysis of the data and interpretation.
 Place and Duration of Study: A portion of Rivers State University demonstration farmland in Nkpolu-Oroworukwo, Mile 3 Diobu area of Port Harcourt, Rivers State was used for this study. The piece of land is situated at Longitude 4°48’18.50’’N and Latitude 6o58’39.12’’E measuring 5.4864 m x 5.1816 m with a total area of 28.4283 m2. Bioremediation monitoring lasted for 56 days, analysis carried out weekly (per 7 days interval).
 Methodology: Seven (7) experimental plots were employed using a Randomized Block Design each having dimensions of 100 x 50 x 20 cm (Length x Breadth x Height) were formed and mapped out on agricultural soil and left fallow for 6 days before contamination on the seventh day; after which it was allowed for 21 days for proper contamination and exposure to natural environmental factors to mimic crude oil spill site. Thereafter bio stimulating agents usually referred to as nutrient amendment organics in this study (fish waste and goat manure) and bio-augmenting microorganisms were applied. Soil profile before and after contamination was assayed while parameters like Nitrate, Sulphate, Phosphate, Total Organic Carbon (TOC) and Total Petroleum Hydrocarbon (TPH), were monitored throughout the experimental period. Microbial analyses such as Total Heterotrophic Bacteria (THB), Total Heterotrophic Fungi (THF), Hydrocarbon Utilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF) were recorded. Bioremediation efficiency was estimated from percentage (%) reduction of Total Petroleum Hydrocarbon (TPH) from day 1 to the residual hydrocarbon at day 56 of bio augmented/ biostimulation plots with the control.
 Results: Results revealed amount of remediated hydrocarbon and % Bioremediation efficiency at 56 days in the different treatment plots (initial TPH contamination value of 9296.83 mg/kg) in a decreasing order as follows: PS+Bac+Pse+GF+FW (8032.825 mg/kg; 86.40%) >PS+GF+FW (6867.825 mg/kg; 73.87%) >PS+Bac+Pse (6587.825mg/kg; 70.86%) >PS+FW (6441.825mg/kg; 69.29%) >PS+GF (5909.825 mg/kg; 63.57%) >CTRL 2 (Polluted soil without amendment) (3604.825mg/kg; 38.78%). Microbiological results showed increased colonial values with increase time exposure. The results observed on day 56 indicate that Polluted soil + Bacillus + Pseudomonas (10.11 Log10 CFU/g) > Polluted soil but un-amended soil (8.76 Log10 CFU/g) > unpolluted soil (8.68 Log10 CFU/g). Comparatively, Polluted soil +Bacillus + Pseudomonas expressed higher heterotrophic bacteria of 9.77 and 9.67 Log10 CFU/g while fungal counts recorded 6.04 and 6.82 Log10 CFU/g.
 Conclusion: Study showed that bioremediation of crude oil-polluted soils with bacteria singly is less effective but a combination with other organic nutrients is a better palliative measure. Therefore, amendment with organic nutrients like Goat manure and Fish wastes is recommended for crude oil polluted soils due to its high nutrient content as substrates for biostimulation of indigenous and augmenting biodegrading microbes. This process could be a source of enhanced natural attenuation of oil-contaminated environments in Nigeria.
Read full abstract