Factors such as limitations in water quality and quantity, cost of land, limitations on water discharges, environmental impacts and diseases, are driving the aquaculture industry toward more intensive practices. This will force producers to adopt environmentally friendlier technologies. Recirculating systems, with a biofilter as the most prominent characteristic, treat internally the water contaminated with dissolved organics and ammonia and reduce the amount of water use and discharge from aquaculture operations. This paper reviews the implications of the changing use of recirculating aquaculture systems (RAS) on biofiltration research for freshwater and marine operations. Demand for cost effective biofilters will increase with the expansion of recirculating systems, both as a complement and replacement of traditional ponds. For freshwater aquaculture, emphasis should be placed in cost competitiveness, low head operations, intensification of ponds with RAS biofiltration and the evaluation of suspended growth systems. In the marine systems, an increase in demand of oligotrophic and ultraoligotrophic systems is expected, particularly in the nursery systems. Sizing and cost efficiency of biofilters for nursery operations should be addressed. Problems in marine biofilter acclimation appear to justify the development of new acclimation procedures. Biosecurity concerns, land cost and storm threats will drive nursery systems inland, where saltwater supply and disposal will force an increased water reuse. Denitrification strategies will need to be redefined and optimized for the marine nursery environment.
Read full abstract