Abstract

Brassicaceae plants are nonmycorrhizal. They were found to inhibit VA mycorrhizal infection in their host plants. We tested if they can influence growth of ectomycorrhizal (ECM) fungi. When roots and leaves of Brassicaceae plants and ECM fungi were cultured together in the same petri dishes, the root exudates of turnip (Brassica rapa), swede (B. napobrassica), cabbage (B. oleracea, var. capitata), broccoli (B. oleracea, var. italica Plenck), kohlrobi (B. caulorapa Pasq.), mustard (B. juncea), radish (Raphanus sativus), and choy (B. napus) significantly stimulated hyphal growth of the ectomycorrhizal fungus Paxillus involutus. Root exudates of turnip and cabbage stimulated hyphal growth of Pisolithus tinctorius and two isolates of P. involutus. Colony area of P. involutus was increased by 452 and 414%, respectively, in the presence of turnip and cabbage germinants. Root exudates of turnip increased the biomass of P. involutus and P. tinctorius by 256 and 122% and cabbage by 220 and 82%, respectively. The stimulatory effect was not affected by autoclaving the root exudates. Root exudates had chemical reactions with glutathione and lysine, which resulted in a reduction of the growth stimulation of ECM fungi. Myrosinase enhanced further the stimulatory effects of turnip on the ECM colony diameter growth by 23%. Autoclaved roots and leaves of turnip did not stimulate fungal growth, but mechanically ground roots and leaves of turnip stimulated growth of P. involutus by 147 and 135%, respectively. After desulfuration with aryl sulphatuse, the glucosinolates (GLSs) in turnip roots and leaves were identified by HPLC. The major ones were indole GLSs. Prominent compounds identified were 1-methoxy-3-indolymethyl GLS and4-methoxy-3-indolymethyl GLS. The finding provides an opportunity to field test the use of Brassicaceae plants in enhancing ectomycorrhizal formation in conifers by interplanting conifers with Brassicaceae plants in forest tree nursery and agroforestry systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.