Two different surface treatments (mechanical polishing, thin film deposition) were performed on cathode surfaces, and the field emission currents from the cathodes were measured with a microchannel plate. In order to discuss the relationship between the breakdown voltage and prebreakdown current in the vacuum gap, the breakdown voltage was measured after field emission measurement. The V–I characteristics of the field emission and breakdown voltage were influenced by surface treatment, and the breakdown voltages of mechanical polished cathodes were lower than those of the thin film deposited cathodes. It was found that the probability of breakdown increased when the field emission current reached 10–11 A. Atomic force microscope (AFM) measurements showed numerous protrusions on the cathode surface in the case of thin film deposition treatment, but we estimated by the finite element method that these protrusions make the field enhancement effect low. It was inferred that the breakdown voltage in vacuum gaps could be increased by the thin film deposition method. © 2000 Scripta Technica, Electr Eng Jpn, 131(4): 11–18, 2000