Face-centered cubic alloys, such as nickel-based alloys and austenitic stainless steels, are important to many industries, notably nuclear power generation and petrochemical. These alloys are prone to ductility-dip cracking (DDC), an inter-mediate-temperature, solid-state cracking phenomenon. They experience an abnormal elevated-temperature ductility loss, which leads to cracking upon applying sufficient restraint. A unified mechanism for DDC has been elusive. To learn more about DDC, an experimental procedure has been designed and evaluated for use in future studies. It is a thermomechanical test that replicates welding conditions via simulated strain ratcheting (SSR) using the Gleeble thermomechanical simulator. This study evaluates SSR and aims to establish the procedure is reproducible and adequately optimized for producing DDC. A design of experiments was created with four alloys tested at varying preloads, elevated temperature strains, and a number of thermomechanical cycles. Mechanical energy imposed within the DDC temperature range was used for quantification of the effect of thermomechanical cycling on the DDC response. The materials tested were 310 stainless steel and Nickel 201 base metals as well as nickel-based filler metals 52M and 52MSS. The SSR successfully recreated DDC while maintaining higher fidelity to actual production conditions than past laboratory tests and offered a more controlled environment than large-scale weld tests. Therefore, the SSR will provide a viable experimental procedure for learning more about the DDC mechanism.