Perimenopause significantly impacts women's health globally, often managed with hormone replacement therapy (HRT) despite the associated risks. This study explores a novel alternative exosome therapy, aimed at stimulating estrogen production in ovarian tissues, thus offering a potential non-hormonal treatment for perimenopausal symptoms. Employing ex vivo methodologies, ovarian cortex specimens from perimenopausal women were treated with exosomes derived from human umbilical cord mesenchymal stem cells and cultured under specific conditions (patent number: PCT/US2022/073467). The exosomes were produced under cyclic guanosine monophosphate (cGMP) conditions, ensuring high safety standards. Estrogen levels were quantified using enzyme-linked immunosorbent assay (ELISA), and gene expression changes in estrogen and follicle-stimulating hormone (FSH) receptors were assessed via quantitative polymerase chain reaction (PCR). Immunohistochemistry (IHC) was utilized to evaluate cellular proliferation and apoptotic markers. The results indicated a significant increase in estrogen levels and estrogen receptor-alpha (Erα) expression in treated tissues compared to controls. Additionally, a decrease in apoptotic markers and an increase in cellular proliferation markers were observed. These findings suggest that exosome therapy can effectively enhance estrogen production and modulate receptor sensitivity in perimenopausal ovarian tissues. This approach could serve as a safer alternative to HRT, aligning with the body's natural regulatory mechanisms and potentially offering a more effective treatment option for managing perimenopausal symptoms.