BackgroundClinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells.MethodA gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation.ResultsFor the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iβ levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion.ConclusionsThe spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.