We report a measurement workflow free of systematic errors consisting of a reconfigurable photon-number-resolving detector, custom electronic circuitry, and faithful data-processing algorithm. We achieve an unprecedented accurate measurement of various photon-number distributions going beyond the number of detection channels with an average fidelity of 0.998, where the error is primarily caused by the sources themselves. Mean numbers of photons cover values up to 20 and faithful autocorrelation measurements range from g^{(2)}=6×10^{-3} to 2. We successfully detect chaotic, classical, nonclassical, non-Gaussian, and negative-Wigner-function light. Our results open new paths for optical technologies by providing full access to the photon-number information without the necessity of detector tomography.
Read full abstract