Nowadays, given the technological advance in CT imaging and increasing heterogeneity in characteristics of CT scanners, a number of CT scanners with different manufacturers/technologies are often installed in a hospital centre and used by various departments. In this phantom study, a comprehensive assessment of image quality of 5 scanners (from 3 manufacturers and with different models) for head CT imaging, as clinically used at a single hospital centre, was hence carried out. Helical and/or sequential acquisitions of the Catphan-504 phantom were performed, using the scanning protocols (CTDIvol range: 54.7–57.5 mGy) employed by the staff of various Radiology/Neuroradiology departments of our institution for routine head examinations. CT image quality for each scanner/acquisition protocol was assessed through noise level, noise power spectrum (NPS), contrast-to-noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD) and non-uniformity index analyses. Noise values ranged from 3.5 HU to 5.7 HU across scanners/acquisition protocols. NPS curves differed in terms of peak position (range: 0.21–0.30 mm-1). A substantial variation of CNR values with scanner/acquisition protocol was observed for different contrast inserts. The coefficient of variation (standard deviation divided by mean value) of CNR values across scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and 30% for teflon, delrin, LDPE, polystyrene and acrylic insert, respectively. An appreciable difference in MTF curves across scanners/acquisition protocols was revealed, with a coefficient of variation of f50%/f10% of MTF curves across scanners/acquisition protocols of 10.1%/7.4%. A relevant difference in LCD performance of different scanners/acquisition protocols was found. The range of contrast threshold for a typical object size of 3 mm was 3.7–5.8 HU. Moreover, appreciable differences in terms of NUI values (range: 4.1%-8.3%) were found. The analysis of several quality indices showed a non-negligible variability in head CT imaging capabilities across different scanners/acquisition protocols. This highlights the importance of a physical in-depth characterization of image quality for each CT scanner as clinically used, in order to optimize CT imaging procedures.