Complexities of D within the Rh blood group system have long been recognized, initially using basic serologic testing and, more recently, using advanced and sensitive typing reagents. Discrepancies may arise when an individual carries a D antigen showing altered D antigen expression. These D variants are clinically important, since they may lead to production of anti-D in the carrier and induce alloimmunization in D- recipients, making their correct identification imperative. For clinical purposes, D variants can be classified into three groups: weak D, partial D, and DEL. The problem surrounding proper characterization of D variants exists because routine serologic tests are sometimes inadequate to detect D variants or resolve discrepant or ambiguous D typing results. Today, molecular analysis has revealed more than 300 RH alleles and is a better method for investigating D variants. Global distribution of variants differs, as observed in European, African, and East Asian populations. Discovery of the novel RHD*01W.150 (weak D type 150) with a nucleotide change of c.327_487-4164dup is proof. This variant, the result of an insertion of a duplicated exon 3 between exons 2 and 4 in the same orientation, was detected in more than 50 percent of Indian D variant samples in a 2018 study. The outcome of studies worldwide has led to the recommendation to manage D variant individuals as D+ or D- according to RHD genotype. The policies and workup with respect to D variant testing in donors, recipients, and prenatal women differ among blood banks, depending on type of variants predominantly encountered. Thus, a general genotyping protocol cannot be followed globally, and an Indian-specific RHD genotyping assay (multiplex polymerase chain reaction) designed to detect D variants frequently found in the Indian population was developed to save time and resources. This assay is also helpful for detecting several partial and null alleles. Identification of D variants by serology and characterization by molecular testing need to go hand-in-hand for better and safer transfusion practices.
Read full abstract