In the avian ascending auditory pathway, the nucleus mesencephalicus lateralis pars dorsalis (MLd; the auditory midbrain center) receives inputs from virtually all lower brainstem auditory nuclei and sends outputs bilaterally to the nucleus ovoidalis (Ov; the auditory thalamic nucleus). Axons from part of the MLd terminate in a particular domain of Ov, thereby suggesting a formation of segregated pathways point-to-point from lower brainstem nuclei via MLd to the thalamus. However, it has not yet been demonstrated whether any spatial clustering of thalamic neurons that receive inputs from specific domains of MLd exists. Ov neurons receive input from bilateral MLds; however, the degree of laterality has not been reported yet. In this study, we injected a recombinant avian adeno-associated virus, a transsynaptic anterograde vector into the MLd of the chick, and analyzed the distribution of labeled postsynaptic neurons on both sides of the Ov. We found that fluorescent protein-labeled neurons on both sides of the Ov were clustered in domains corresponding to subregions of the MLd. The laterality of projections was calculated as the ratio of neurons labeled by comparing ipsilateral to contralateral projections from the MLd, and it was 1.86 on average, thereby indicating a slight ipsilateral projection dominance. Bilateral inputs from different subdomains of the MLd converged on several single Ov neurons, thereby implying a possibility of a de novo binaural processing of the auditory information in the Ov.
Read full abstract