We investigated acute and chronic effects administration of methionine (Met) and/or methionine sulfoxide (MetO) on ectonucleotidases and oxidative stress in platelets and serum of young rats. Wistar rats were divided into four groups: control, Met, MetO, and Met + MetO. In acute treatment, the animals received a single subcutaneous injection of amino acid(s) and were euthanized after 1 and 3 hours. In chronic protocol, Met and/or MetO were administered twice a day with an 8-hour interval from the 6th to the 28th day of life. Nucleoside triphosphate phosphohydrolase and 5'-nucleotidase activities were reduced in platelets and serum by Met, MetO, and Met + MetO after 3 hours and 21 days. Adenosine deaminase activity reduced in platelets at 3 hours after MetO and Met + MetO administration and increased after 21 days in animals treated with Met + MetO. Superoxide dismutase and catalase activities decreased in platelets in MetO and Met + MetO groups after 3 hours, while reactive oxygen species (ROS) levels increased in same groups. Catalase activity in platelets decreased in all experimental groups after chronic treatment. Met, MetO, and Met + MetO administration increased plasmatic ROS levels in acute and chronic protocols; glutathione S-transferase activity increased by MetO and Met + MetO administration at 3 hours, and ascorbic acid decreased in all experimental groups in acute and chronic protocols. Thiobarbituric acid reactive substances increased, superoxide dismutase and catalase activities reduced in the Met and/or MetO groups at 3 hours and in chronic treatment. Our data demonstrated that Met and/or MetO induced changes in adenine nucleotide hydrolysis and redox status of platelets and serum, which can be associated with platelet dysfunction in hypermethioninemia.
Read full abstract