Increasing cancer disease incidence worldwide has become a major public health issue. Manual histopathological analysis is a common diagnostic method for cancer detection. Due to the complex structure and wide variability in the texture of histopathology images, it has been challenging for pathologists to diagnose manually those images. Automatic segmentation of histopathology images to diagnose cancer disease is a continuous exploration field in recent times. Segmentation and analysis for diagnosis of histopathology images by using an efficient deep learning algorithm are the purpose of the proposed method. To improve the segmentation performance, we proposed a deep learning framework that consists of a high-resolution encoder path, an atrous spatial pyramid pooling bottleneck module, and a powerful decoder. Compared to the benchmark segmentation models having a deep and thin path, our network is wide and deep that effectively leverages the strength of residual learning as well as encoder-decoder architecture. We performed careful experimentation and analysis on three publically available datasets namely kidney dataset, Triple Negative Breast Cancer (TNBC) dataset, and MoNuSeg histopathology image dataset. We have used the two most preferred performance metrics called F1 score and aggregated Jaccard index (AJI) to evaluate the performance of the proposed model. The measured values of F1 score and AJI score are (0.9684, 0.9394), (0.8419, 0.7282), and (0.8344, 0.7169) on the kidney dataset, TNBC histopathology dataset, and MoNuSeg dataset, respectively. Our proposed method yields better results as compared to benchmark segmentation methods on three histopathology datasets. Visual segmentation results justify the high value of the F1 score and AJI scores which indicated that it is a very good prediction by our proposed model.
Read full abstract