Abstract

Deep convolutional neural networks have been highly effective in segmentation tasks. However, segmentation becomes more difficult when training images include many complex instances to segment, such as the task of nuclei segmentation in histopathology images. Weakly supervised learning can reduce the need for large-scale, high-quality ground truth annotations by involving non-expert annotators or algorithms to generate supervision information for segmentation. However, there is still a significant performance gap between weakly supervised learning and fully supervised learning approaches. In this work, we propose a weakly-supervised nuclei segmentation method in a two-stage training manner that only requires annotation of the nuclear centroids. First, we generate boundary and superpixel-based masks as pseudo ground truth labels to train our SAC-Net, which is a segmentation network enhanced by a constraint network and an attention network to effectively address the problems caused by noisy labels. Then, we refine the pseudo labels at the pixel level based on Confident Learning to train the network again. Our method shows highly competitive performance of cell nuclei segmentation in histopathology images on three public datasets. Code will be available at: https://github.com/RuoyuGuo/MaskGA_Net.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.