The Gyeong-Ju earthquake in the magnitude of 5.8 on the Richter scaleoccurred in September 12, 2016. Because there are many nuclear power plants (NPP) near the epicenter of the Gyeong-Ju earthquake, the seismic stability of nuclear power plants is becoming a social problem. In order to evaluate the safety of seismically isolated NPP, the seismic response of a NPP subjected to the Gyeong-Ju earthquake was compared with those of 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum (NSDS). A 2-node model and a simple beam-stick model were used for the seismic analysis of seismically isolated NPP structures. Using 2-node model, the effect of internal temperature rise, decrease of shear stiffness, increase of lateral displacement and decrease of vertical stiffness according to nonlinear behavior of lead-rubber bearing (LRB) were evaluated. The displacement response, the acceleration response, and the shear force response of the seismically isolated nuclear containment structure were evaluated using the simple beam-stick model. It can be observed that the seismic responses of the isolated nuclear structure subjected to Gyeong-Ju earthquake is significantly less than those to the artificial earthquakes corresponding to NSDS.