The aim of this study was to investigate the anti-ferroptotic effect of resveratrol (RSV) on retinal Müller cells (RMCs) in the early stages of diabetic retinopathy (DR) via the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4)/prostaglandin-endoperoxide synthase 2 (PTGS2). The retina was obtained from normal and diabetic Sprague-Dawley rats or wild-type and Nrf2 knockout (KO) diabetic mice, with or without RSV (10mg/kg/d) treatment for 12weeks. RMCs transfected with or without SiNrf2 were cultured with high glucose and RSV (20mM). The retinal neurofunctional changes were measured by electroretinogram (ERG). The retinal inner nuclear layer cell mitochondrial morphological changes were detected by transmission electron microscopy. The cell viabilities were measured by cell counting kit-8 (CCK-8) assay. The levels of Fe2+, malonic dialdehyde (MDA), and glutathione (GSH) were measured by colorimetric method. The expression of Nrf2, GPx4, and PTGS2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry. In vivo, RSV inhibited retinal neurofunctional changes and mitochondrial morphological changes; decreased Fe2+, MDA, and PTGS2; and increased GSH, Nrf2, and GPx4 in retina of DM rats. In vitro, RSV decreased MDA and PTGS2 and increased cell viability, GSH, Nrf2, and GPx4. In vivo and vitro, the role of Nrf2-regulated signaling pathway in anti-ferroptosis by RSV was further confirmed using Nrf2 KO mice and pre-transfected SiNrf2 in RMCs. These findings indicated that RSV is a potential therapeutic option for DR and that Nrf2/GPx4/PTGS2 plays a role in the anti-ferroptosis mechanism of RSV on RMCs.