Abstract

The retina has low dopamine levels early in diabetes. To determine how low dopamine levels affected dopamine signaling, the effects of dopamine receptor agonists and mRNA localization were measured after 6 weeks of diabetes. Whole retina ex vivo electroretinogram (ERG) recordings were used to analyze how dopamine type 1 receptor (D1R) and type 4 (D4R) agonists change the light-evoked retinal responses of non-diabetic and 6-week diabetic (STZ injected) mouse retinas. Fluorescence in situ hybridization was utilized to analyze D4R and D1R mRNA locations and expression levels. D4R activation reduced A- and B-wave ERG amplitudes and increased B-wave implicit time and rise-time in the non-diabetic group without a corresponding change in the diabetic group. D1R activation increased B-wave rise-time and oscillatory potential peak time in the non-diabetic group also with no change in the diabetic group. The lack of responsivity to D1R or D4R agonists shows an impairment of dopamine signaling in the diabetic retina. D4R mRNA was found primarily in the outer nuclear layer where photoreceptor cell bodies reside. D1R mRNA was found in the inner nuclear layer and ganglion cell layer that contain bipolar, amacrine, horizontal and ganglion cells. There was no change in D4R or D1R mRNA expression between the non-diabetic and diabetic retinas. This suggests that the significant dopamine signaling changes observed were not from lower receptor expression levels but could be due to changes in dopamine receptor activity or protein levels. These studies show that changes in retinal dopamine signaling could be an important mechanism of diabetic retinal dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.