BackgroundFibronectin, an extracellular matrix protein, has been reported to be associated with heterogeneous cancer stemness, angiogenesis and progression in multiple cancer types. However, the roles and the underlying mechanism of fibronectin on the progression NSCLC need to be further elucidated.MethodsPublic dataset such as Kaplan-Meier Plotter was used to determine the prognostic significance of genes. The correlation of different protein expression in clinical and xenograft tissues was tested by immunohistochemistry experiment. Both in vitro and in vivo experiments were performed to determine the role of fibronectin on the tumor growth, metastasis, and angiogenesis in NSCLC. The activation of key signaling pathway under fibronectin was examined by WB assay. RNA-seq was applicated to screening the target gene of fibronectin. Rescue experiment was performed to confirm the role of target gene in fibronectin-mediated function in NSCLC. Finally, luciferase and CHIP assays were used to elucidate the mechanism by which fibronectin regulated the target gene.ResultsOur results revealed that fibronectin was up-regulated in cancer tissues compared with the normal ones in NSCLC patients. Dish- coated fibronectin enhanced the tumor growth, metastasis, and angiogenesis of NSCLC in vitro and in vivo by promoting EMT and maintaining stemness of NSCLC cells. As expected, fibronectin activated FAK and its downstream MAPK/ERK signaling pathway. WISP3 was screened as a potential target gene of fibronectin. Interestingly, WISP3 effectively activated Wnt signaling pathway, and knockdown of WISP3 effectively blocked the influence of fibronectin on the migration, invasion and vascular structure formation potential of NSCLC cells. Our data also manifested that fibronectin elevated the transcription of WISP3 gene by promoting the binding of HIF-1α to the promoter region of WISP3 in NSCLC cells.ConclusionsOur findings sketched the outline of the route for fibronectin exert its role in NSCLC, in which fibronectin activated downstream FAK and MAPK/ERK signaling pathways, and mediated the accumulation of HIF-1α. Then, HIF-1α enabled the transcription of WISP3, and subsequently promoted the activation of Wnt signaling pathway, and finally enhanced the tumor growth, metastasis, and angiogenesis in NSCLC.