BackgroundMyeloid-derived suppressor cells (MDSCs) and cyclooxy-genase-2 (COX-2)/Prostaglandin E2 (PGE2) axis are important contributors to sepsis-induced immune-suppression. The purpose of present study is to explore whether COX-2 inhibitor can improve immunological disorder after sepsis via regulating MDSCs. MethodsA ‘‘two-hit’’ model reflecting clinical sepsis development was performed. Cecal ligation and puncture (CLP) and Legionella pneumophila infection were used as the first and the second hit, respectively. NS398, a selective COX-2 inhibitor, was utilized to treat septic mice. The motality, bacterial counts in the lung, systematic inflammatory reaction and CD4 + T cells response after sepsis were assessed, so as the frequency and function of MDSCs. In some experiments, the number of MDSCs was manipulated by adoptive transfer or neutralizing antibody before induction of secondary infection. ResultsMice surviving CLP showed a marked expansion and activation of MDSCs in spleen, accompanied by suppressed proliferating capability, impaired secreting functionand increased apoptosis of CD4 + T cells. Majority of CLP survivors became succumbed to L. pneumophila invasion, associated with defective bacteria elimination ability. NS398 treatment was found to ameliorate these adverse outcomes significantly. ConclusionMDSCs contribute greatly to the sepsis-induced immune dysfunction. Inhibiting COX-2 may become a promising therapy that targets MDSCs-induced immunosuppression.
Read full abstract