In several studies, the regulatory role of the neuropeptide W (NPW) system in food intake has been demonstrated. Considering the lack of avian studies in this field, the current research was conducted to evaluate the effects of intracerebroventricular (ICV) infusion of NPW and its interferences with corticotropin, melanocortin, and neuropeptide Y (NPY) receptors on meal consumption and feeding behaviors of broilers. In the first experiment, birds were injected with NPW (0.75, 1.5, and 3 nmol) in addition to saline. In the second experiment, saline, CRF1 receptor antagonist (NBI35965, 30 μg), NPW (3 nmol), and simultaneous injections of NBI35965 and NPW were performed. Experiments 3–8 were identical to experiment 2, except that CRF2 receptor antagonist (K41498, 30 μg), MC3/MC4 receptor antagonist (SHU9119, 0.5 nmol), MC4 receptor antagonist (HS024, 0.5 nmol), NPY1 receptor antagonist (BMS193885, 1.25 nmol), NPY2 receptor antagonist (CYM9484, 1.25 nmol), and NPY5 receptor (antagonist L-152,804, 1.25 nmol) were administrated instead of NBI35965. After that, cumulative feed intake and feeding behavior were monitored for 2 h and 30 min after injections, respectively. Following the infusion of NPW (1.5 and 3 nmol), there was a significant stimulation of meal consumption in chickens (P < 0.05). Concomitant injection of NBI35965 and K41498 with NPW enhanced the appetite-increasing effect of NPW (P < 0.05); while BMS193885 suppressed this effect of NPW (P < 0.05). Injection of SHU9119, HS024, CYM9484, and L-152804 with NPW at the same time, had no significant effect on NPW-induced hyperphagia (P > 0.05). NPW also significantly decreased the standing period and the number of jumps, steps, and exploratory pecks, and led to an increase in sitting period and feeding pecks (P < 0.05). Based on the observations, it seems that NPW-induced hyperphagia could be mediated through CRF1, CRF2, and NPY1 receptors in neonatal broilers.