The infrapatellar fat pad (IFP) is a common cause of knee pain and loss of knee flexion and extension. However, its anatomy and behavior are not consistently defined. Thirty-six unpaired fresh frozen knees (median age 34 years, range 21-68) were dissected, and IFP attachments and volume measured. The rectus femoris was elevated, suprapatellar pouch opened and videos recorded looking inferiorly along the femoral shaft at the IFP as the knee was flexed. The patellar retinacula were incised and the patella reflected distally. The attachment of the ligamentum mucosum (LMuc) to the intercondylar notch was released from the anterior cruciate ligament (ACL), both menisci and to the tibia via meniscotibial ligaments. IFP strands projecting along both sides of the patella were elevated and the IFP dissected from the inferior patellar pole. Magnetic resonance imaging (MRI) of one knee at ten flexion angles was performed and the IFP, patella, tibia and femur segmented. In all specimens the IFP attached to the inferior patellar pole, femoral intercondylar notch (via the LMuc), proximal patellar tendon, intermeniscal ligament, both menisci and the anterior tibia via the meniscotibial ligaments. In 30 specimens the IFP attached to the anterior ACL fibers via the LMuc, and in 29 specimens it attached directly to the central anterior tibia. Proximal IFP extensions were identified alongside the patella in all specimens and visible on MRI [medially (100% of specimens), mean length 56.2 ± 8.9mm, laterally (83%), mean length 23.9 ± 6.2mm]. Mean IFP volume was 29.2 ± 6.1ml. The LMuc, attached near the base of the middle IFP lobe, acting as a 'tether' drawing it superiorly during knee extension. The medial lobe consistently had a pedicle superomedially, positioned between the patella and medial trochlea. MRI scans demonstrated how the space between the anterior tibia and patellar tendon ('the anterior interval') narrowed during knee flexion, displacing the IFP superiorly and posteriorly as it conformed to the trochlear and intercondylar notch surfaces. Proximal IFP extensions are a novel description. The IFP is a dynamic structure, displacing significantly during knee motion, which is, therefore, vulnerable to interference from trauma or repetitive overload. Given that this trauma is often surgical, it may be appropriate that surgeons learn to minimize injury to the fat pad at surgery.
Read full abstract