Two hundred and seventy-seven shells of the long-lived bivalve mollusc Arctica islandica, collected from the Fladen Ground, northern North Sea, were radiocarbon dated and their taphonomic condition assessed, in order to determine whether taphonomic condition might provide a reliable indication of time since the death of the animal. With nine stations from across the Fladen Ground sampled, some strong geographic biases in 14C ages were apparent, with living and modern (post-bomb pulse) material found in the northern part of the Fladen Ground while older material (first half of the last millennium and Early Holocene/Lateglacial) was concentrated in the central and western sites. Samples from the south and east Fladen Ground were sparse and were dominated by material from the second half of the last millennium. This south-north distribution is interpreted as the result of environmental change over millennial time-scales in the North Sea causing a gradual northward shift of living A. islandica populations and is not thought to be related to post mortem transport of shells to the south and east. Taphonomic condition, assessed using discriminant analysis and principal component analysis of five characteristics (amount of remaining periostracum, presence and condition of the ligament, extent of erosion at the shell margin, amount of bioerosion, and condition of the inner shell layer), appeared to be a generally unreliable indicator of time since the death of the animal. Based on these five taphonomic characteristics, discriminant analysis placed 81.1% of post-bomb shells, 39.6% of shells from the period 0–500 yr BP, 68.0% of shells from the period 500–1000 yr BP and 20.0% of shells from the Early Holocene/Lateglacial group into the correct radiocarbon age grouping, providing no support for the idea that this method can be used to triage shells for chronology construction as an alternative to radiometric dating.