In many regions, water limitations are increasing because of frequent and persistent droughts and competition for water resources. As a result, growers in these regions, including those producing blueberries, must limit irrigation during drier years. To identify the most critical periods for irrigation, we evaluated the effects of soil water deficits during various stages of fruit development on different cultivars of northern highbush blueberry (Vaccinium corymbosum L.). The study was conducted for 2 years in western Oregon and included two early season cultivars, ‘Earliblue’ and ‘Duke’, a midseason cultivar, ‘Bluecrop’, and two late-season cultivars, ‘Elliott’ and ‘Aurora’. Volumetric soil water content and stem water potentials declined within 1 to 2 weeks with no rain or irrigation in each cultivar and were lowest during the later stages of fruit development. Water deficits reduced berry weight by 10% to 15% in ‘Earliblue’ and ‘Elliott’ when irrigation was withheld in the second year during early or late stages of fruit development and by 6% to 9% in ‘Aurora’ when irrigation was withheld in either year during the final stages of fruit development. However, water deficits only reduced yield significantly in ‘Aurora’, which produced 0.8 to 0.9 kg/plant fewer fruit per year when irrigation was withheld during fruit coloring. In many cases, water deficits also reduced fruit firmness and increased the concentration of soluble solids in the berries, but they had inconsistent effects on titratable acidity and sugar-to-acid ratios. As a rule, water deficits were most detrimental during later stages of fruit development, particularly in midseason and late-season cultivars, which ripened in July and August during the warmest and driest months of the year.