Abstract The Devonian–Recent tectono-stratigraphic history of the Northern, Central and Southern North Sea is here reviewed at a regional scale and four novel cross-border pseudo-Wheeler diagrams are presented to summarize the stratigraphic evolution of the cycles of basin fill and uplift/erosion. In this scheme, six first-order megasequence boundaries have been defined, characterized by extensive and long-lasting erosional hiatuses and major coastal regressions: (1) Caledonian (or Base Devonian) Unconformity; (2) Variscan–Saalian (or Base Permian) Unconformity; (3) Mid Cimmerian (or Intra-Aalenian) Unconformity; (4) Late Cimmerian (or Base Cretaceous) Unconformity; (5) Atlantean (or Near-Base Tertiary) Unconformity; and (6) Eridanos (or Mid-Miocene) Unconformity. These surfaces have been linked to regional causal factors ranging from orogenesis-related compressional uplifts, in either active plate margin settings (1) or foreland basin settings (2), to intra-plate dynamically supported uplifts associated with the development of mantle plumes (3, 5 and 6) and the end-of-rifting and associated widespread erosion of tilted fault block crests (4). The aforementioned megasequence boundaries punctuate the geodynamic evolution of the North Sea area and facilitate the subdivision of the entire the North Sea sedimentary basin fill into six megasequences, named here A–F. All of the lithostratigraphic units of the North Sea (formations and members) have been described within the context of this first-order tectono-stratigraphic framework. The correlation powers of certain stratigraphic markers are also compared and contrasted, together with the potential cross-border equivalence of sedimentary units on different sides of the political median lines.