We have determined the complete nucleotide and deduced amino acid sequences of the RNA genome of CBNU1, a human norovirus (NoV) recovered from a 2006 outbreak in South Korea. The genome of 7547 nucleotides, excluding a 3′-poly(A) tail of 11–105 nucleotides, encodes three overlapping open reading frames (ORFs): ORF1 (nucleotides 5–5104), ORF2 (nucleotides 5085–6731), and ORF3 (nucleotides 6731–7495). In a comparison to 108 other currently available completely sequenced NoVs representing all five genogroups (GI–GV) except GIV, the CBNU1 strain was highly similar to GII.3 NoVs. Multiple sequence alignments of the completely sequenced NoV genomes revealed five hypervariable regions throughout their genomes: two in ORF1, one in ORF2, and two in ORF3. At both the nucleotide and amino acid levels, genome-based phylogenetic analyses invariably showed that the CBNU1 strain was most closely related to three GII.3 NoVs: the American Texas/TCH04-577 and the two Japanese Saitama U18 and Saitama U201 strains; furthermore, these genome-based phylogenetic topologies corresponded most closely to those based on the ORF2 genes, as compared to those based on the ORF1 and ORF3 genes. Subsequent ORF2-based phylogenetic analyses of a selection of 126 other NoVs representing all 19 GII genotypes, in combination with genome-based Simplot analyses, showed that the CBNU1 strain was a recombinant GII.3 NoV with a breakpoint at the ORF1/ORF2 junction between two putative parent-like strains, Guangzhou/NVgz01 and Texas/TCH04-577. Overall, the CBNU1 strain represents the first Korean human NoV whose genome has been completely sequenced and for which its relationship with a large panel of genetically diverse NoVs has been extensively characterized.