High-density lipoprotein (HDL)-free cholesterol (FC) transfers to other lipoproteins and cells, the former by a spontaneous mechanism and the latter by both spontaneous and receptor-mediated mechanisms. Macrophages are an important cell type in all stages of atherosclerotic cardiovascular disease (ASCVD), and the magnitude of FC efflux from macrophages to HDL, a metric of HDL function, inversely associates with several metrics of ASCVD. Very high plasma HDL concentrations are associated with increased all cause and ASCVD mortality, suggesting that the reverse process, FC influx from HDL into macrophages, is atherogenic. We hypothesize that HDL-FC is a metric of dysfunctional HDL, and when combined with HDL particle number (HDL-P), is an ASCVD risk factor. The magnitude of FC influx from HDL to macrophages is expected to be a function of HDL-P and HDL-FC content. Here we show that plasma HDL-FC content varies 2-fold among normolipidemic human subjects and linearly correlates with low-density lipoprotein (LDL)-FC content. The influx of HDL-FC into macrophages and transfer to LDL increase linearly with HDL-FC. As expected, influx of HDL-FC into macrophages and transfer to LDL are positively correlated. These data support the hypothesis that high HDL FC content is a marker for dysfunctional HDL, resulting in greater influx into macrophages and greater HDL-FC transfer to LDL. HDL-FC transfer to LDL is a valid surrogate for influx into macrophages. This study of HDL composition and function of normolipidemic subjects provides the basis for further investigation and establishment of HDL-FC content as an ASCVD risk factor.
Read full abstract