The article presents the physical-chemical bases and as result – the technological bases of concrete resistance to ultra-low cryogenic (up to-196 °C) technical (engineering) temperatures, which is applied to the reinforced concrete structures of engineering constructions such as storage tanks for liquefied gases (in particular, liquid nitrogen and oxygen with cryogenic temperatures), as well as the enclosing structures of blocks (units) for air separation for various inert gases. The above-mentioned physical and chemical bases of concrete resistance to the ultralow cryogenic technical temperatures are developed, using the results of the analysis of modern ideas (hypotheses and theories) about the mechanism of low negative temperatures exposure on structural lightweight aggregate concrete and normal weight concrete due to the characteristics of their macro-and microstructure. The resistance of structural lightweight aggregate concrete in comparison with equal-strength normal weight concrete to the cyclic exposure of cryogenic temperatures was performed by the authors based on the results of the relevant analytical and experimental investigations. The results of these investigations are considered in the article as a modern scientific basis for the development of the main provisions for the manufacturing technology of structural lightweight aggregate concrete and normal weight concrete with high durability (frost resistance and water resistance) in conditions of cyclic exposure to cryogenic temperatures. The results of changes in strength and deformative characteristics of concrete in the process of cyclic freezing and thawing are accepted as evaluation criteria of the resistance of concrete, manufactured using the above-mentioned technologies, to such temperature exposure.