BackgroundAutism spectrum disorder (ASD) is characterized by repetitive behaviors, deficits in communication, and overall impaired social interaction. Of all the integrin subunit mutations, mutations in integrin β3 (Itgb3) may be the most closely associated with ASD. Integrin β3 is required for normal structural plasticity of dendrites and synapses specifically in excitatory cortical and hippocampal circuitry. However, the behavioral consequences of Itgb3 function in the forebrain have not been assessed. We tested the hypothesis that behaviors that are typically abnormal in ASD—such as self-grooming and sociability behaviors—are disrupted with conditional Itgb3 loss of function in forebrain circuitry in male and female mice.MethodsWe generated male and female conditional knockouts (cKO) and conditional heterozygotes (cHET) of Itgb3 in excitatory neurons and glia that were derived from Emx1-expressing forebrain cells during development. We used several different assays to determine whether male and female cKO and cHET mice have repetitive self-grooming behaviors, anxiety-like behaviors, abnormal locomotion, compulsive-like behaviors, or abnormal social behaviors, when compared to male and female wildtype (WT) mice.ResultsOur findings indicate that only self-grooming and sociability are altered in cKO, but not cHET or WT mice, suggesting that Itgb3 is specifically required in forebrain Emx1-expressing cells for normal repetitive self-grooming and social behaviors. Furthermore, in cKO (but not cHET or WT), we observed an interaction effect for sex and self-grooming environment and an interaction effect for sex and sociability test chamber.LimitationsWhile this study demonstrated a role for forebrain Itgb3 in specific repetitive and social behaviors, it was unable to determine whether forebrain Itgb3 is required for a preference for social novelty, whether cHET are haploinsufficient with respect to repetitive self-grooming and social behaviors, or the nature of the interaction effect for sex and environment/chamber in affected behaviors of cKO.ConclusionsTogether, these findings strengthen the idea that Itgb3 has a specific role in shaping forebrain circuitry that is relevant to endophenotypes of autism spectrum disorder.