BackgroundThoracic aortic aneurysm and aortic dissection (TAAD) is one of the most fatal cardiovascular diseases. Senkyunolide I (SEI) is a component of traditional Chinese medicine with remarkable anti-inflammatory properties and exhibits remarkable protective effects, but its impact on TAAD remains unclear. Our study aimed to explore the role of SEI in a murine model of TAAD and further explore the immunopharmacological mechanism. Methods and materialsThe in vivo model were assessed using echocardiography, gross anatomy, and tissue staining. Western blot and immunofluorescence were performed to evaluate the effects of SEI in vivo and in vitro. A SEI solution injection containing 1 % dimethyl sulfoxide (DMSO) was administered intraperitoneally to the TAAD model group, while a normal saline injection comprising 1 % DMSO was administered to the sham group. ResultsSEI prevented TAAD formation induced by BAPN/Ang II and reduced the TAAD incidence in mice. SEI treatment significantly inhibited the degradation of collagen and elastin fibers in the extracellular matrix. Furthermore, it reduced the expression of inflammatory factors in the aortic intima. Western blot analysis revealed that SEI-treated mice showed a significant decrease in apoptosis-related protein levels in the aorta compared with the TAAD group. PI3K, Akt, and mTOR in the SEI treatment group were significantly lower than in the model group. SEI could also attenuate H2O2-induced Human umbilical vein endothelial cells (HUVECs) damage and reverse the decline in migrant cells. The apoptosis of HUVECs was considerably reduced by the SEI treatment. ConclusionsConclusively, SEI may alleviate the progression of TAAD by suppressing the PI3K/Akt/NF-κB signaling pathway. The SEI's ability to inhibit inflammation and oxidative stress opens the way to restore the function of endothelial cells and vascular homeostasis, and thus to provide novel and promising options for the treatment of TAAD patients.
Read full abstract