In this paper, we present a theoretical analysis and experimental results of a pyrometric temperature measurement method based on a two-color pyroreflectometer (working wavelengths of 1.3μm and 1.55μm) equipped with an optical fiber probe. By measuring simultaneously the radiance temperature and the normal reflectivity, the true temperature of the measurement target can be determined without the previous knowledge of the optical properties of the sample. The method is based on the introduction and the definition of the diffusivity factor ηd and the assumption that it is equal for the two wavelengths. Besides the experimental results, the sources of errors and their impact on the method accuracy and the performance of the setup are discussed. The quality of the measurement results demonstrates the utility of the pyroreflectometry in a domain where fundamental parameters, such as the temperature and radiative properties, present the major measurement difficulties. The diffusivity factor appears not only a step to determine the true temperature but also as a parameter very useful to evaluate the diffusing behavior of opaque materials.
Read full abstract