A finite-element model of the Navier-Stokes equations is used for numerical simulation of flow past two normal flat plates arranged side by side at Reynolds number 80 and 160. The results from this simulation indicate that when the gap between the plates is twice the width of a single plate, the individual wakes of the plates behave independently, with the antiphase vortex shedding being dominant. At smaller gap sizes, the in-phase vortex shedding, with strong wake interaction, is favored. The gap flow in those cases becomes biased, with one of the wakes engulfing the other. The direction of the biased flow was found to be switching at irregular intervals, with the time histories of the indicative flow parameters and their power spectra resembling those of a chaotic system.
Read full abstract